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Linear global modes in the Rayleigh–Bénard–Poiseuille system, for the case of two-
dimensional non-uniform heating in the form of a single hot spot, are analysed in the
framework of the envelope equation formalism. Global mode solutions are sought
by means of WKBJ asymptotics. As for the one-dimensional case, an analytical
selection criterion for the frequency may be derived from the breakdown of the
WKBJ expansion at a two-dimensional double turning point located at the maximum
of the local Rayleigh number. The analytical results, including the behaviour of the
mode in the vicinity of the turning point, are compared with results obtained from
numerical simulations of the envelope equation. Finally, the issue of the selection of
the wavevector branches in the WKBJ expansion is discussed.

1. Setting up the spatially non-uniform problem
The Ginzburg–Landau equation with an advection term and variable coefficients

has served widely as a model equation for the study of synchronized one-dimensional
global modes (see Huerre & Monkewitz 1990; Chomaz, Huerre & Redekopp
1991; Le Dizès et al. 1996; Pier, Huerre & Chomaz 2001, among others). A two-
dimensional Ginzburg–Landau equation in Rayleigh–Bénard–Poiseuille (RBP) con-
vection at low Reynolds numbers, that is the mixed convection in a horizontal fluid
layer heated from below with a superimposed one-directional Poiseuille through-
flow, has been rigorously derived by envelope formalism in Part 1 of this paper
(Carrière, Monkewitz & Martinand 2004, hereinafter referred to as I; equation
numbers preceeded by I refer to Part 1). The complex envelope A of transverse
roll (TR) patterns, i.e. with the axes of the rolls perpendicular to the Poiseuille flow,
in particular, is governed by equation (I3.20), with cos φ = 1:

∂tA= (r − ρ2)A − ρ(c + η)∂xA + iρη∂2
yA +

(
∂x − i∂2

y

)2
A − A2A, (1.1)

† Present address: Turbulence and Mixing Group, Department of Aeronautics, Imperial College
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where t denotes time and x and y the streamwise and transverse coordinates,
respectively. The entire analysis and discussion in the present paper will be carried out
in the coordinates defined in I, which have been scaled and transformed according
to (I3.2)–(I3.3) and (I3.6). It suffices to recall here that the main characteristic of
these coordinate definitions is the scaling of y like x1/2. The transformed coordinates
serve to simplify the presentation as much as possible, but, as a consequence, the
recovery of the global mode envelope in physical coordinates is somewhat involved.
The real control parameters r and ρ are the rescaled Rayleigh and Reynolds numbers,
respectively, while c and η are two positive (real) functions of the Prandtl number
P . In the case of spatially uniform r and ρ, the threshold for convective instability
is obtained from the linearized version of (1.1) as rc = ρ2; the boundary of absolute
instability is ra = ρ2(1 + (c + η)2/4) (see I3.23).

To understand the relation between the instability of a spatially uniform (parallel)
system and localized instabilities associated with spatial non-uniformities, it is useful
to start with the simplest possible model. It consists of keeping the rolls homogeneous
in the y-direction parallel to their axes, i.e. ∂y ≡ 0 in (1.1), and confining the solution
to a domain of finite streamwise extent by requiring A= 0 at the boundaries x = 0
and x = L, while keeping r and ρ constant. In this case, the marginally unstable
solutions of the linearized version of (1.1) are A= sin(nπx/L) exp(ρ(c + η)/2), and
the corresponding critical values of the Rayleigh number are

r (n,L)
c = ρ2

(
1 +

(c + η)2

4

)
+

(nπ)2

L2
. (1.2)

It is noteworthy that for L → ∞, r (n,L)
c → ra so that only local absolute instability

gives rise to linear instability in a streamwise confined domain. However, as r exceeds
the lowest r (1,L)

c , modes with increasingly larger n become unstable and the solution
develops strong gradients near the domain boundaries as it grows nonlinearly, thereby
violating the assumptions for the derivation of the envelope equation (1.1) (see also
the analogous phenomenon in the Ginzburg–Landau model for vortex shedding from
a finite length cylinder, discussed in § 3 of Albarède & Monkewitz 1992). Furthermore,
vanishing perturbations at both domain boundaries are not very realistic physically:
in an experiment, perturbations swept into the test section are difficult to minimize
and at the outflow boundary they are often substantial.

These problems can be alleviated by assuming a spatial variation of the control
parameters in an infinite domain in such a manner that the system is linearly stable
everywhere, except in a region of finite extent. Assuming, for instance, the parabolic
variation r = r (max) −x2/L2 in (1.1) where the y-derivatives are still omitted, the critical
value r (max)

c for linear instability is found to be

r (max)
c = ρ2

(
1 +

(c + η)2

4

)
+

1

L
. (1.3)

Again, equation (1.3) behaves like r (n,L)
c in the limit of L → ∞, i.e. r (max)

c → ra.
To represent physical reality, however, the spatial variation of the parameter r

should mimic the experimental condition of a fully developed Poiseuille flow with
constant temperature entering the differentially heated part of the apparatus. For this,
fully analytical solutions of equation (1.1) reduced to its x-variation are no longer
adequate for a realistic shape of r(x). We have to resort to an asymptotic analysis
based on matched WKBJ expansions as in Monkewitz, Huerre & Chomaz (1993), for
instance. Within this framework, the selection criterion for the most unstable global
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(synchronized and self-excited) mode is obtained from the matching of the WKBJ
expansions through turning points.

For the RBP problem, a first analysis of this type has been carried out in
Carrière & Monkewitz (2001) for a purely streamwise variation of the Rayleigh
number, i.e. for the two-dimensional case with only one wave propagation direction.
The present study aims at extending the ideas and asymptotic methods used in the
classical two-dimensional global mode analysis to the RBP system with two wave-
propagation directions, i.e. to the case where the Rayleigh number r(x, y) in the full
two-dimensional equation (1.1) varies slowly in both the streamwise and transverse
directions.

The inclusion of the transverse parameter variation in the analysis of a thermal
convection system such as the RBP system is essential to arrive at a physically realistic
model, since convection patterns are known to be very sensitive to the presence of
lateral walls, for instance. We note in passing that the through-flow profile in any
real RBP cell also varies with y near the lateral walls. Moreover, in real systems non-
uniformities of the temperature, for instance, are hardly one-dimensional, as assumed
in Carrière & Monkewitz (2001), but take the form of ‘hot spots’ of various shapes.
It is the aim of the present analysis to elucidate the conditions for which such a ‘hot
spot’ within an RBP cell leads to a localized convection roll pattern. The influence of
sidewalls on the through-flow and on the roll pattern, however, will not be considered.
This amounts to assuming that the lateral extent of the RBP cell is large compared
to the size of the hot spot and that the physical sidewalls are located within zones of
local stability, which may be compared to the ‘viscous sponges’ used near (outflow)
boundaries in numerical analysis.

The following global mode analysis is based on the envelope equation (1.1), which
offers an attractive alternative to the major complications of an analysis based on the
original conservation equations. The main simplification is that it allows us to work
with an explicit rather than an implicit (numerically defined) local dispersion relation.
Furthermore, numerical solutions of equation (1.1) are easily obtained to compare
with analytical predictions, in particular providing a good test for the mode selection
criteria to be developed.

The material is organized as follows: § 2 is devoted to the WKBJ approximations
and a discussion of the associated turning points. Next, the frequency selection
criterion for global modes, associated with a double turning point in two dimensions,
is derived in § 3. Analytical predictions of global mode frequency and growth rate
as well as the envelope amplitude in the neighbourhood of the double turning point
are then compared in § 4 with numerical simulations of the envelope equation with
hot spots in the form of Gaussian bumps introduced through the spatial variations
of the reduced Rayleigh number r . The last section, finally, is devoted to a general
discussion of the relevance of the global mode analysis, and touches on some aspects
of the complete global mode construction which involves matching of outer WKBJ
expansions (outer in both the x- and y-directions) and the inner solution in the
turning point region.

2. WKBJ expansion
The linear global mode analysis is governed by the linearized version of (1.1):

∂tA= (r − ρ2)A − ρ(c + η)∂xA + iρη∂2
yA +

(
∂x − i∂2

y

)2
A. (2.1)
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As in our previous work for the two-dimensional (i.e. one-dimensional in terms of
wave propagation direction) problem (see Carrière & Monkewitz 2001), the spatial
inhomogeneities are imposed through the x- and y-dependence of the reduced
Rayleigh number r . In order to obtain a well-posed global mode problem, r is
taken to be at a subcritical value sufficiently far from a central region, where a single
maximum is reached for x = y = 0. Local instability arises in (2.1) when r > ρ2.

The presence of the fourth derivative in y prevents the analytical solution of (2.1)
for meaningful variations of r . Assuming that r varies on a typical length scale much
larger than O(1), i.e. the cell height, the solution of (2.1) can be approximated by
WKBJ expansion. For this, we introduce the coordinates X = εx and Y = εy, slow
relative to the original x and y coordinates of (1.1) and assume that r = r(X, Y ).
The WKBJ expansion of a perturbation with complex frequency ω on the trivial
steady-state solution of (2.1) can then be written in the form:

A(X, Y, t) = (A0(X, Y, ω) + εA1(X, Y, ω) + O(ε2)) exp

(
i

ε
Φ(X, Y, ω) − iωt

)
. (2.2)

As in the one-dimensional case, the frequency is a priori expanded as ω = ω0 + εω1 +
O(ε2). The necessity of this expansion will become clear in the construction of the
global mode. The components of the wavevector in the x- and y-directions, hereinafter
denoted as a(X, Y, ω) and b(X, Y, ω), respectively, are related to the phase Φ(X, Y, ω)
by:

a(X, Y, ω) = ∂XΦ, b(X, Y, ω) = ∂Y Φ, (2.3)

with the continuity condition:

∂Y a = ∂Xb. (2.4)

Conversely, Φ may be determined from a and b using:

Φ(X, Y, ω) =

∫ X

0

a(p, Y ) dp +

∫ Y

0

b(0, q) dq =

∫ X

0

a(p, 0) dp +

∫ Y

0

b(X, q) dq, (2.5)

where the arbitrary value of Φ(0, 0, ω) is taken to be 0. Introducing the WKBJ
expansion (2.2) in (2.1), a local dispersion relation is recovered at leading order:

ω = i(r − ρ2) + ρc ∂XΦ + ρη (∂XΦ + (∂Y Φ)2) − i(∂XΦ + (∂Y Φ)2)2, (2.6)

or, equivalently, in terms of a and b:

ω = i(r − ρ2) + ρca + ρη (a + b2) − i(a + b2)2. (2.7)

The two-dimensional local dispersion relation (2.6) is now a nonlinear first-order
partial differential equation on Φ . As in the one-dimensional case, (2.6), or equivalently
(2.7) and (2.4), defines a complete family of solutions among which only some are
physically relevant (namely those satisfying condition (2.9)). Following the general
methodology in Monkewitz et al. (1993), the partial differential equation for A0 is
obtained at O(ε) in the WKBJ expansion:

∂aω∂XA0+∂bω∂Y A0+A0

(
−iω1+

1
2
∂2

aω∂Xa+ 1
2
∂2

bω∂Y b+ 1
2
∂a∂bω(∂Y a+∂Xb)

)
= 0. (2.8)

This equation breaks down where ∂aω = ∂bω = 0, i.e. when the group velocity vanishes.
As far as the dispersion relation (2.7) is concerned, such a turning point for the
amplitude equation (2.8) does exist in Fourier (a, b)-space. Inspired by the one-
dimensional case, this turning point is assumed to govern the behaviour of the global
mode. A local analysis around this turning point is thus required and will be carried
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Figure 1. Regions of positive/negative imaginary parts of the wavenumbers a and b in the
physical (X,Y )-space. Far from the central region, r has been assumed to correspond to regions
of local stability.

out in § 3. As in the one-dimensional case, the vanishing of the group velocity is
related to branch changes of the wavevector, these branch changes being necessary to
enforce the boundary conditions for the global mode. The subcritical values of r(x, y)
sufficiently far from the central region require A (X, Y, t) to be bounded as |X| → ∞
or |Y | → ∞. Thus, Φ has to satisfy:

Im(Φ(X, Y, ω)) → + ∞ as |X| → ∞ or |Y | → ∞. (2.9)

Condition (2.9) may be equivalently expressed as:

∀Y, Im(a) < 0 as X → −∞, Im(a) > 0 as X → + ∞, (2.10a)

∀X, Im(b) < 0 as Y → −∞, Im(b) > 0 as Y → + ∞, (2.10b)

assuming the complex nature of a and b. The main difficulty in the calculation
of the WKBJ expansion is that the group velocity and the wavevector have two
components. The simultaneous treatment of the branch changes for both components
of the wavevector is required to uniquely express and evaluate the first order of the
WKBJ expansion (2.2). This implies that the decay of the global mode far from the
locally unstable area should be considered in both the x- and y-direction, leading
to the far-field values of the imaginary parts of a and b shown in figure 1. These
requirements on the imaginary parts must be added to the required existence of several
solution branches for a and b. The matchings of the different solution branches for a

or b will be the main topic of § 5.

3. The double turning point region
A turning point is defined by the conditions:

∂aω = ∂bω = 0. (3.1)

This turning point is two-dimensional by nature, and the two equations of (3.1) define
a simple two-dimensional turning point. Together with (2.7), (3.1) defines the values
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ωt, at and bt at a turning point, identified by the superscript t. From

ρ(c + η) − 2i
(
at + bt2

)
=0 (3.2a)

and

2bt
(
ρη − 2i

(
at + bt2

))
= 0, (3.2b)

it follows that:

at = − 1
2
iρ(c + η), bt = 0, (3.3)

and the local value of the frequency at this turning point is finally obtained as:

ωt = ir t − iρ2

(
1 +

(c + η)2

4

)
= i(r t − ra), (3.4)

where the local critical value for absolute instability ra is given by (I3.23). As discussed
in Le Dizès et al. (1996), the selection criterion could at this point be imposed by
a set of simple turning points with a common value of r or by the coalescence of
these turning points in a double turning point. The location (Xt, Y t) of such a double
two-dimensional turning point is defined by (3.1) and, in addition,

∂Xωt = ∂Y ωt = 0. (3.5)

The parametric dependence of ωt on X and Y via r t(x, y) implies that the double
turning point is located at the maximum of r t, i.e. at

Xt = Y t = 0. (3.6)

As Im(ωt) is proportional to r t, the local growth rate is largest at the double turning
point. Therefore, it is reasonable to assume that this double turning point provides
the selection criterion for the global mode. Possible global modes associated with a
set of simple turning points will not be considered in this study.

In a direct extension of the one-dimensional case (see Huerre & Monkewitz 1990),
two inner variables χ = ε−1/2X and υ = ε−1/2Y are introduced in the vicinity of the
double turning point, and the perturbation is sought in the form:

A(χ, υ, t) =
(
A0(χ, υ) + ε1/2A1/2(χ, υ) + εA1(χ, υ) + O

(
ε3/2

))
× exp

(
i

ε1/2
(atχ + btυ) − i(ω0 + εω1)t

)
, (3.7)

while r is expanded as:

r = r t + 1
2
ε
(
∂2

Xr tχ2 + ∂2
Y r tυ2 + 2∂X∂Y r tχυ

)
+ O

(
ε3/2

)
. (3.8)

For r to have a true maximum at the origin, we must assume that:

∂2
Xr t < 0, ∂2

Y r t < 0 and (∂X∂Y r t)2 <∂2
Xr t∂2

Y r t. (3.9)

Inserting the expansions (3.7) and (3.8) into the governing equation (2.1), the
homogeneous problem is recovered at O(ε0). Furthermore, the dispersion relation
(2.7) implies ω0 =ωt. At O(ε1/2), the stability equation is satisfied without loss of
generality by A1/2 = 0 while, at O(ε), the following second-order partial differential
equation for A0 is obtained:

∂2
χA0 − iρc∂2

υA0 + A0

(
iω1 + 1

2

(
χ2∂2

Xr t + υ2∂2
Y r t + 2χυ∂X∂Y r t

))
= 0. (3.10)

It is seen that separation of variables is possible in (3.10) if the principal axes of
the temperature bump are aligned with the coordinates, i.e. in cases where ∂X∂Y r t = 0.
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In this situation, the selection criterion and envelope equation become identical to
the one-dimensional case (see Carrière & Monkewitz 2001). More general solutions
for swept hot spots can be found by first introducing the substitution:

A0 =F (χ, υ) exp
(
− 1

2
(αχ2 + βυ2 + 2δχυ)

)
. (3.11)

The α, β and δ in (3.11) are solutions of:

−α2 + iρcδ2 = 1
2
∂2

Xr t, (3.12a)

iρcβ2 − δ2 = 1
2
∂2

Y r t, (3.12b)

(−α + iρcβ)δ = 1
2
∂X∂Y r t. (3.12c)

Thus, the governing equation for F is:

∂2
χF − iρc∂2

υF −2(αχ + δυ)∂χF +2iρc(βυ + δχ)∂υF +F (iω1 + iρcβ −α) = 0. (3.13)

For ω1 = −iα − ρcβ , (3.13) has the particular solution F = const. Introducing the
substitution:

ζ = dχ2 + eυ2 + 2δχυ, (3.14)

with d and e given by:

de = δ2, (3.15a)

id − ρce = iα − ρcβ, (3.15b)

equation (3.13) is transformed into an equation of the degenerate hypergeometric
kind (see Polyanin & Zaitsev 1995, equation 2.1.2.103, p. 143)) for F (ζ ):

(id + ρce) ζd2
ζF − 1

2
(2(id + ρcβ)ζ − id − ρce)dζF − 1

4
(ω1 + iα + ρcβ)F = 0. (3.16)

Note that the system (3.15) generally has two solutions (d1, e1) and (d2, e2) for
given values of α, β and δ, thereby generating two independent variables ζ1 and ζ2

(corresponding to the independence of the original variables χ and υ). Focusing on
one variable ζ and omitting the subscript, the solution of (3.16) is given by:

F (ζ ) =C1M

(
a, 1

2
,
ζ

λ

)
+ C2

(
ζ

λ

)1/2

M

(
a + 1

2
, 3

2
,
ζ

λ

)
, (3.17)

with C1 and C2 two free constants,

a =
1

4

ω1 + iα + ρcβ

id + ρcβ
, λ=

id + ρce

id + ρcβ
(3.18)

and M being the Kummer function (see Abramovitz & Stegun 1964).
The two-dimensional function F (χ, υ) is thus transformed into the sum of two

independent one-dimensional functions F1 (ζ1) and F2 (ζ2) which can be studied in a
similar fashion to the one-dimensional case (see, again, Huerre & Monkewitz 1990;
Carrière & Monkewitz 2001). The decay of the global mode as |x| → ∞ or |y| → ∞
requires that A0 is a decaying function of |χ | and |υ|. A solution (α+, β+, δ+) of (3.12)
consistent with this requirement has to satisfy:

Re(α+) > 0, Re(β+) > 0, Re(δ+)2 <Re(α+)Re(β+). (3.19)

Moreover, for large |ζ |, the Kummer function M increases more rapidly than the
exponential term of (3.11) except when it reduces to Hermite polynomials. This is the
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case when 2a = −n, with n zero or a positive integer. Hence, the following relation is
obtained for the O(ε) frequency

ω
(1,2)
1 = −iα+ − ρcβ+ + 2n(id1,2 + ρcβ+). (3.20)

This defines two infinite sets of global modes in the directions ζ1 and ζ2 given by
d1 and d2, respectively, which correspond to a discrete frequency spectra. The two
sets are connected at n= 0, where the two solutions d1 and d2 coalesce. Equations
(3.12), (3.15) and (3.17), together with conditions (3.9) and the conditions (3.19) of
global mode decay far from the origin, finally yield the inner solution (3.11) and the
associated complex frequency correction (3.20). Its consistency with the underlying
mathematical construction of the global mode and its physical relevance are discussed
next.

First, since the scale of the spatial variations of Hermite polynomials decreases with
n, the mode number n cannot be too large without conflicting with the hypothesis of
the slow O(ε1/2) variation of A0(χ, υ), as already remarked by Huerre & Monkewitz
(1990). More specifically, for large n, the scaling of the inner region would have to be
adapted to the faster variation of the solution, leading eventually to a situation of two
first-order turning points separated by an O(ε0) distance, as considered by Le Dizès
et al. (1996). Whether the modes with large n are physically relevant, depends on
the sign of the imaginary part of 2n(id1,2 + ρcβ+) in (3.20). Since our analysis breaks
down for large n, we clearly require that

Im(id1,2 + ρcβ+) < 0, (3.21)

which makes the mode n= 0 the most unstable, or critical, mode. It is not clear whether
condition (3.21) can be derived in any generality from fundamental principles, but we
are not aware of any global mode computation where this condition is violated for
realistic flow. In other words, it appears that, in practice, the most unstable global
mode is the one with the simplest spatial structure.

Next, we invoke heuristic arguments to fix the sign of the imaginary part of the
frequency correction (3.20), i.e. the difference between the global growth rate and the
maximum local absolute growth rate at the top of the temperature bump. Specifically,
we require that critical global mode n=0 grows at a smaller rate than the maximum
local absolute growth rate, i.e that Im (ω1) < 0 for all n, including n= 0. For this, it is
sufficient to require, in addition to (3.21) that

Im(−iα+ − ρcβ+) < 0. (3.22)

This condition is motivated by the intuitive physical argument that in the
inhomogeneous system, the regions far from the ‘hot spot’ must be entrained by
the most unstable local mode dominating at the top of the temperature bump. It is
reasonable to expect that this entrainment or synchronization of the mismatched –
more stable – outer regions causes additional radiation and/or viscous losses to
the most unstable local mode at the top of the temperature bump, compared to
the homogeneous situation without mismatched outer regions where the mean flow
is everywhere equal to the most absolutely unstable mean flow at the top of the
temperature bump†. If we assume that the inhomogeneity does not reinforce the

† A similar ‘transmission loss’ argument appears to be valid in the case of a single spatial
instability wave propagating in a slowly varying inhomogeneous medium (see e.g. Crighton &
Gaster 1976; Gaster, Kit & Wygnanski 1985), where in all the known examples, the total spatial
amplification is reduced when carrying the WKBJ approximation from the level of ‘geometrical
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destabilization mechanism relative to the parallel case, the postulated loss translates
into Im (ω1) < 0 for all n. Another way of justifying (3.22) is to consider the
consequences of Im (ω1) > 0 for, say, the critical mode n= 0: in this case, the global
growth rate to O(ε1), Im (ω0 + εω1) would increase with increasing non-parallelism ε

while keeping ω0 fixed. In other words, the global growth rate would be increased by
reducing the size of the hot spot while keeping the conditions at its centre fixed. This
is obviously unreasonable in the limit of small hot spots with relatively large ε of,
say, O (1). However, our O(ε1) analysis does not apply to ε for which the argument is
obvious and in the limit of small ε we were, again, not able to derive condition (3.22)
from some fundamental principle. Nevertheless, we are not aware of any realistic flow
in which the global growth rate has been found to exceed the maximum local absolute
growth rate in the flow. In the symmetric example where ∂X∂Y r t = 0, the coefficients
satisfying (3.19) are given by

α+ =

(
−∂2

Xr t

2

)1/2

, β+ =
1 + i

2

(
−∂2

Y r t

ρc

)1/2

, d1 = α+ + iρcβ+, d2 = 0. (3.23)

This leads to:

−iω(1)
1 = − (2n + 1)

(
−∂2

Xr t

2

)1/2

− 1
2

(
−ρc∂2

Y r t
)1/2

+
i

2

(
−ρc∂2

Y r t
)1/2

, (3.24a)

−iω(2)
1 = −

(
−∂2

Xr t

2

)1/2

− 2n + 1

2

(
−ρc∂2

Y r t
)1/2

+
i(2n + 1)

2

(
−ρc∂2

Y r t
)1/2

. (3.24b)

Thus, conditions (3.21) and (3.22) are satisfied and the most unstable global mode is
the one with n= 0 and F =const., i.e. with a Gaussian shape for the amplitude in both
the χ- and υ-direction. In the case where ∂X∂Y r t �=0, the solution is more complicated
and explicitly given in Martinand (2003). Nevertheless, as stated above, it has not
been established so far that conditions (3.21) and (3.22) flow from general properties
of the dispersion relation (2.7) at the turning point, together with conditions (3.9)
and (3.19). In the present study, we have analytically investigated the solutions of
(3.20) for specific values of the parameters covering the range used in the numerical
simulation of § 4. In this range of parameter values, a single solution (α+, β+, δ+) of
system (3.12) was always found to satisfy condition (3.19). In agreement with the
numerical simulations, this solution always induced the matching of conditions (3.21)
and (3.22), with, consequently, the most unstable mode obtained for n= 0 and a
stabilizing effect of the spatial variations of the reduced Rayleigh number.

As a last step, the selection criterion and the envelope are reexpressed in terms of
original coordinates x and y. The correction at O(ε) for the frequency is then

εω1 = −iεα − ρcεβ. (3.25)

The envelope approximation in the inner region of the most unstable mode previously
evaluated is

A0(x, y) = exp
(
− 1

2
(εαx2 + εβy2 + 2εδxy)

)
, (3.26)

optics’, represented by the exponential factor in (2.2), to the level of ‘physical optics’, including
the corrective factor A0 in (2.2). Note that in the ‘geometrical optics’ approximation, all the
perturbation energy is transmitted downstream, while the mismatch of eigenfunctions between
consecutive streamwise stations enters into the determination of A0.
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with εα, εβ and εδ the solutions of the following system (3.27) satisfying conditions
(3.19), which are checked to satisfy conditions (3.21) and (3.22).

−(εα)2 + iρc(εδ)2 = 1
2
∂2

x r
t, (3.27a)

iρc (εβ)2 − (εδ)2 = 1
2
∂2

y r
t, (3.27b)

(−εα + iρcεβ) εδ = 1
2
∂x∂yr

t. (3.27c)

4. Numerical simulations
In this section, the quality of the analytical description of the global mode developed

in § 3 is assessed by comparison with the linear growth stage of numerical solutions of
the nonlinear equation (1.1). For this, we use a Prandtl number of P = 7 corresponding
to the coefficient values c =11.27 and η = 0.101, as derived in I (I2.11 and I2.13d
modified by I3.19). Furthermore, the spatial variation of the parameter (r − ρ2)(x, y)
is assumed to be a two-dimensional Gaussian bump with, in the most general case, a
swept elliptical planform:

(r − ρ2)(x, y) = −1 + 2 exp

(
− 1

2
x2

(
cos2 ψ

σ 2
1

+
sin2 ψ

σ 2
2

)

− 1
2
y2

(
sin2 ψ

σ 2
1

+
cos2 ψ

σ 2
2

)
− 1

2
xy sin 2ψ

(
1

σ 2
1

− 1

σ 2
2

))
, (4.1)

where ψ is the angle between the x-axis and the principal axis ‘1’ of characteristic
length σ1. For simplicity, the function (r − ρ2)(x, y) is kept unchanged, while the
reduced Reynolds number ρ is reduced below its critical value ρcrit which therefore
depends on σ1, σ2 and ψ only. The local stability properties are then best characterized
in terms of (r − ρ2). Where (r − ρ2)(x, y) < 0 the system is locally stable (LS). For
0 < (r − ρ2)(x, y) < ρ2(c + η)2/4, the system is locally convectively unstable (LCU)
and, finally, it is locally absolutely unstable (LAU) for (r − ρ2)(x, y) > ρ2(c + η)2/4.
As an LAU region is necessary to destabilize a global mode of the type considered
here, the critical parameter ρcrit must be smaller than ρa = 2/(c + η) = 0.1759.

The numerical calculations are performed in a square domain (x, y) ∈
[−50, 50; −50, 50] with a spatial mesh size of �x = �y =0.5 . A centred second-order
spatial scheme is used on this grid and time is advanced by an explicit first-order Euler
scheme with a time step of �t = 2×10−3. When starting a numerical simulation from a
white noise initial condition, the dominant eigenstate emerges only after a substantial
transient. This transient growth does not affect the asymptotic behaviour of the
numerical simulation as far as the final growth rate and eigenstate are concerned.
This is particularly evident for a damped instability, where saturation does not alter
the linear dynamics. As seen in figure 2(a), this transient corresponds in our system to
a temporary increase of the mean perturbation energy by several orders of magnitude.
The asymptotic behaviour being our only concern, it is desirable to eliminate this
large transient. For this, the analytical expression (3.26) of the most amplified or least
damped linear mode in the ‘summit’ region of the temperature bump, as obtained
in § 3, is used as the initial condition for the computation. Figure 2(b) clearly shows
that this initial condition dramatically reduces the duration and magnitude of the
transient growth (note the different vertical scales). As it should be, the asymptotic
decay rate is the same in both cases, equal to 4.2 × 10−3. Furthermore, the asymptotic
perturbation (eigenstate) in figure 2(c) obtained from white noise is identical to the
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Figure 2. Comparison between the evolution of white noise (a) and (c) and of the dominant
analytical mode (b) and (d), with an initial mean amplitude of 10−6 in both cases. σ1 = σ2 = 20
and ρ = 0.1627. The two top figures show the space-averaged amplitude and the times (�) of
the amplitude ‘snapshots’ in the bottom figures.

perturbation in figure 2(d) obtained with analytical initial condition. For the circular
bump of figure 2, this asymptotically dominant numerical eigenstate is egg-shaped
with a gradually rising front and an advected downstream tail.

In unstable cases, the asymptotic saturated states are independent of the initial
conditions, but are of minor interest as this long time behaviour is dominated by the
nonlinear effects independently of the linear growth rate. The transient growth starting
from white noise merges into the saturated state due to the nonlinear term of (1.1)
before the exponentially growing dominant linear eigenmode can emerge by selective
amplification. This purely exponential growth, which is the object of comparison, can
only be isolated by initiating the simulations with the analytical mode.

To further test the global mode analysis in § 3, the analytical and numerical values
for the critical Reynolds number ρcrit are compared. The analytical ρana

crit is obtained
by finding the zero of the function Im(ω = ωt + ω1) of ρ (cf. (3.4) and (3.25)) for
the given bump shape (r − ρ2)(x, y). The numerical value ρnum

crit is extrapolated from
the linear growth rates of the envelope amplitude at the centre of the cell for three
unstable values of ρ and the same (r − ρ2)(x, y) function, as shown in figure 3.

Next, the numerical and analytical envelope fields for a given set of parameters σ1,
σ2, ψ and ρ are compared. Using (3.26), (3.3), (3.4) and (3.25), the envelope field is
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Figure 3. Evaluation of the numerical ρnum
crit for σ1 = σ2 = 20. (a) Evolution of the amplitude

at the centre of the cell for different values of ρ. (b) Growth rates (�) extracted from (a) with
linear extrapolation to ρnum

crit = 0.1624 (�).

analytically approximated by the expression for the envelope of the most unstable
global mode in the double turning-point region:

A(x, y) = A0(x, y) exp(iatx + ibty − i(ωt + εω1)t). (4.2)

This analytical expression of the envelope does not incorporate the WKBJ expansion
and variation of the wave vector far from the temperature bump ‘summit’.

The bump (4.1) is characterized by three geometrical features: its characteristic size,
its aspect ratio and its angle ψ with the x-axis. The first feature is investigated with
circular bumps of variable size. The second one is investigated with symmetric bumps
with constant σ1σ2 and variable aspect ratio. The last dependency is investigated with
bumps of fixed aspect ratio and variable sweep angle.

4.1. Circular bumps with variable unstable area

As σ = σ1 = σ2 is increased, the analytical and numerical critical values of ρ increase
and the convective–absolute threshold ρa is approached, as expected when the size
of the unstable domain is increased. As seen in figure 4, the agreement between
the numerical simulations and the selection criterion is good. For small values of
σ , the analytical assumption of slow spatial variations of (4.1) is barely satisfied
and the agreement between numerical and analytical results deteriorates, the latter
underpredicting ρcrit. For large values of σ , the remaining small difference between
the numerical and analytical results is due to the rather coarse mesh used for the
numerical simulation. It was checked for σ = 20, that the refinement of this mesh,
with a corresponding decrease of the time step to satisfy the CFL condition, makes
ρana

crit coincide with the limit of ρnum
crit for zero mesh size.

Considering now the amplitude distribution, the locations of the roll packet just
downstream of the LAU region are similar for the analytical approximation and the
numerical simulation, but the two amplitude distributions are conspicuously different.
As seen in figure 5, the peak of the analytical approximation is wider than in the
numerical simulation, does not present an advected tail and its maximum is shifted
upstream.
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Figure 4. Comparison between analytical (—) and numerical (�) critical values of ρ versus
the bump size σ = σ1 = σ2. The dashed line is the convective–absolute threshold ρa =0.1759
for the homogeneous case.

4.2. Elliptical bumps with variable aspect ratio

The next step is to consider bumps with different aspect ratios σ1/σ2 aligned with
the x-direction. The analytical selection criterion is seen in figure 6 to agree well
with the numerical results. We note that high and low values of σ1/σ2 violate the
assumption of slow variation. The effect is that low values of σ2 cause the selection
criterion to overpredict the critical value of ρ whereas low values of σ1 lead to an
underprediction. This discrepancy turns out to be severe for ε ∼ O(1). For σ1 = 1, for
instance, the system is analytically found to be always stable, i.e. ρana

crit = 0, whereas it
is numerically unstable below ρnum

crit = 0.0777.
It is noteworthy that for a constant characteristic area of the unstable domain,

the confinement effect in the y-direction is as stabilizing as the confinement in the
x-direction, despite the advective effect of the mean flow that could be expected to
stabilize preferentially bumps which are short in the x-direction. Hence, the most
unstable situation is attained for the circular bump.

4.3. Swept elliptical bumps

A swept elliptical bump completely breaks the symmetries in the y-direction and is
therefore of interest to validate the selection criterion imposed by a double turning
point at the top of the bump. As seen in figure 7, the analytical selection criterion
agrees well with the numerical values of the threshold ρcrit and provides the correct
dependence on the sweep angle ψ . From figure 7, it is seen that ψ has only a strong
effect on the oscillation period of the instability with ψ , as the variation of T is of
the order of magnitude of the period, with a significant decrease when the bump is
elongated in the x-direction. We also note that the agreement between analytical and
numerical periods improves with the characteristic size of the bump in the x-direction,
i.e. when ψ → π/2 in figure 7(b).

Concerning the envelope shape, the position of the global mode is well captured by
the analysis. As seen in figure 8, the maximum of the envelope amplitude is located
on the boundary between the LCU and LS regions, as for a global mode associated
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Figure 5. Comparison between analytical approximation and numerical simulation of the
envelope amplitude, with σ1 = σ2 = 20, ρ =0.1513, εα = 0.05, εβ = 0.0272 + i0.0272, εδ = 0 and
ω = −0.0459 + i0.1816. The amplitudes are shown at t = 60 where the initial mean amplitude
is 10−6 in both cases. (a) (r − ρ2) as a function of x and y. (b) Comparison of analytical (—)
and numerical (- - -) amplitude contours. (c, d) Three-dimensional representations of numerical
and analytical amplitudes, respectively. In the four figures, the darkest shade marks the LAU
region, the intermediate shade the LCU region and the lightest shade the LS region.

Figure 6. Comparison between analytical (—) and numerical (�) critical values of ρ as
functions of σ1, with σ1σ2 = 100.
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Figure 7. Comparison between (a) analytical (—) and numerical (�) critical values of ρ
and (b) oscillation periods at the numerical and analytical stability threshold, respectively, as
functions of ψ (σ1 = 5 and σ2 = 20).

Figure 8. Comparison between analytical approximation and numerical simulation of
the envelope amplitude, with σ1 = 5, σ2 = 20, ψ = π/4, ρ = 0.1407, εα = 0.1218 + i0.0214,
εβ =0.0848 + i0.0668, εδ = 0.0660 + i0.0328 and ωt + εω1 = −0.1131 + i0.1323. The other
parameters and conventions are as in figure 5.

with a one-dimensional r(x) bump (see for instance Carrière & Monkewitz 2001). In
the transverse direction, the maximum is located close to the most downstream point
of the boundary between the LAU and LCU regions.
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Figure 9. Comparison between the analytical approximation (—) and the numerical
simulation (- - -) of the envelope amplitude using (a) a Gaussian and (b) a parabolic
(r − ρ2)-bump. The parameters are as in figure 5.

5. Discussion
Before discussing the relevance of the analytical approximation of the global

mode and its possible improvements, the reader is again reminded that the x and y

coordinates used here are scaled and transformed as specified in § 3 of I. So again, the
global mode shapes shown in this section do not correspond directly to the shapes
that would be observed in physical space.

As shown in the previous section, in particular figures 4, 6 and 7, the frequency
selection criterion obtained from the analytical approximation agrees well with the
numerical simulations, provided ε is small. Furthermore, as this criterion derives
directly from the dispersion relation, the global mode frequency and growth rates are
relatively easy to evaluate. However, the inner region approximation (3.26), obtained
from (3.10), yields only the general shape and location of the ‘convection roll packet’.
A closer look at figures 5 and 8 reveals obvious differences between the analytical
approximation and the numerical simulation discussed in the following.

A first consequence of extending the inner region solution (3.26) to the whole
domain is that the coefficient (r − ρ2)(x, y) in (3.10) behaves as the parabola (3.8)
fitting the Gaussian bump (used for the computations) at its maximum. The further
from the centre of the bump the rolls are, the more their degree of instability (r − ρ2)
is underpredicted by the parabolic approximation. To investigate to what degree this
difference is responsible for the larger downstream extent of the roll packet – the
advected tail – in the numerical simulations, computations with the parabolic function
(3.8) for (r −ρ2)(x, y) have been carried out. As seen in figure 9, this partially reduces
the downstream extent of the numerical global mode and moves the numerical and
analytical amplitude maxima together.

To explain the remaining difference, it must be kept in mind that, according to
the inner region asymptotics, the analytical wavevector (a, b) is equal to

(
at, bt

)
everywhere in the domain, whereas the simulations use the full dependence of the
wavenumbers on r for both the Gaussian and parabolic (r − ρ2) bumps. Improving
the accuracy of the analytical approximation away from the top of the bump would
require the WKBJ expansions in the outer regions where the wavenumbers vary with
r . As stated in § 2, the complete expression of the amplitude in the outer region
requires the partial matching of expansions valid on different spatial branches of
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a or b. The main complication of these matchings is that the branch switching
of one component of the wavevector depends on the other component. Since the
complete WKBJ approximation of the wavevector field remains at the moment an
open problem, we can only attempt to outline the issues at stake and raise the question
of the integration of the outer solution. Specifically, the discussion will be limited to
the matching of solution branches in the Fourier (a, b)-space, where we show how
the global mode can be constructed in principle. The proposed construction blueprint
may, however, not be unique and, furthermore, the translation of trajectories in (a, b)-
space into WKBJ integration paths in the complex (X, Y )-space is far from trivial and
may not be possible in some cases. Nevertheless, the numerical simulations suggest
that the proposed global mode construction is possible for the examples in this paper.

With wave propagation in both the X and Y directions, the spatial branches of each
component of the wavevector are surfaces parameterized by the other component,
e.g. a(X, Y, b, ω) and b(X, Y, a, ω). Considering the construction of a WKBJ solution
outlined in § 2 and § 3, the calculation of the phase Φ(X, Y ) requires knowledge
of where the wavevector has to switch from one solution surface of the dispersion
relation to another. What has already been established is that the boundedness of
the amplitude imposes on the imaginary parts of the wavevector components the
conditions (2.10), summarized in figure 1. Unlike in the one-dimensional case, these
conditions do not lead in a straightforward manner to the choice of the correct branch
of the wavevector. With ω given by the selection criterion at the double turning point,
the dispersion relation (2.7) yields a as a function of b:

a± = −b2 − 1
2
iρ(c + η) ± (iρcb2 − (rt − r))1/2. (5.1)

The two solutions merge for ∂aω =0, i.e. iρcb2 − (rt − r) = 0, and the two associated
branch points are:

abp1 = i

(
rt − r

ρc
− ρ

2
(c + η)

)
, (5.2a)

bbp1 =

(
rt − r

2ρc

)1/2

(1 − i), (5.2b)

and

abp2 = i

(
rt − r

ρc
− ρ

2
(c + η)

)
, (5.3a)

bbp2 = −
(

rt − r

2ρc

)1/2

(1 − i). (5.3b)

As depicted in figure 10, the branch cuts are chosen along the Stokes lines in the
b-plane, satisfying Im(a+) = Im(a−) and joining bbp1 to bbp2 via infinity, so as to
exclude the point b =0. These branch cuts, on which the imaginary parts of a are
folded and the real parts discontinuous, cannot be crossed by a path in (a, b)-space.
Hence, we can only switch from one a-solution surface to the other through one of
the branch points. A consequence of the choice of branch cuts in the b-plane is the
relation Im(a1) � Im(a2), where the ‘equal to’ sign applies only at the branch points.
However, Im(a) can change sign on any given solution surface and the condition
(2.10) is therefore not sufficient to determine the correct branch of a in the different
regions of physical (X, Y )-space in figure 1. Progress can be made by considering b as
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Figure 10. (a) Imaginary and (b) real parts of a1(b) (top figures) and a2(b) (bottom figures)
including branch points ∂aω = 0 (�) and ∂bω = 0 with b =0 (�) for r − ρ2 = −1, r t − ρ2 = 1,
ρ = 0.175, and c and η as given in § 4. The regions of negative imaginary part are shown in a
darker shade.

a function of a:

b±,± = ±
(
−a − 1

2
iρη ±

(
1
4
ρ2((c + η)2 − η2) − (r t − r) − iρca

)1/2)1/2
. (5.4)

As (2.7) is second order in b2, a choice of branch cut for the root of b2 along the
positive real b-axis produces two solutions with Im(b) > 0 and two other solutions
with Im(b) < 0. These four solution surfaces are connected at four branch points given
by ∂bω =0:

abp3 = −i

(
ρ

2
(c + η) + (r t − r)1/2

)
, (5.5a)

bbp3 = 0, (5.5b)

abp4 = −i

(
ρ

2
(c + η) − (r t − r)1/2

)
, (5.6a)

bbp4 = 0, (5.6b)

abp5 = i

(
rt − r

ρc
− ρ2

4ρc
((c + η)2 − η2)

)
, (5.7a)

bbp5 =

(
rt − r

2ρc
− ρc

8

)1/2

(1 − i) (5.7b)
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Figure 11. Imaginary parts of the four surfaces b1(a)–b4(a) (progressively shaded darker)
and branch points for ∂bω = 0 with b = 0 (�). Parameters as in figure 10.

and

abp6 = i

(
rt − r

ρc
− ρ2

4ρc
((c + η)2 − η2)

)
, (5.8a)

bbp6 = −
(

rt − r

2ρc
− ρc

8

)1/2

(1 − i). (5.8b)

Proceeding now to the branch cuts in the a-plane, they are again chosen along
Stokes lines which allows us to sort the solutions b, for all a, according to their
imaginary parts

Im(b1) > Im(b2) > 0 > Im(b3) > Im(b4), (5.9)

as depicted in figure 11. These Stokes lines in the a-plane are defined by Im(b+,+) =
Im(b+,−) and Im(b−,−) = Im(b−,+). They are determined implicitly by the relation (5.9)
since no analytical representation has been found for them. Nevertheless, it follows
from (5.5)–(5.8) that the surfaces b2 and b3 are connected by the branch points abp3

and abp4 with b(a) = 0.
When choosing the appropriate root of b, we are faced with the additional difficulty

that, even if the imaginary parts did not change sign on any solution surface, there
are for each sign two roots of b to choose from. Hence, the sign of the imaginary
part is again not a sufficient criterion for the correct choice of the branch of b.
By considering specific paths joining different regions of physical space in figure 1
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Figure 12. Imaginary parts of the two surfaces (a) a1(b) and (b) a2(b) including branch points
∂aω = 0 (�) and ∂bω = 0 with b = 0 (�). Parameters and conventions (regions of Im(a) < 0 shown
in darker shade) as in figure 10. On both branches, a path joining the (Im (a) > 0, Im(b) < 0)
and (Im(a) > 0, Im(b) > 0) regions is shown schematically.

(related to regions of wavenumber space by virtue of 2.10), the proper choice of a-
and b-branches can nevertheless be specified.

Consider for instance a path connecting in Fourier space the (Im (a) > 0, Im(b) < 0)
and (Im(a) > 0, Im(b) > 0) regions of figure 1 sufficiently far from the inner region
such that r ≈ r∞ along the entire path. If this path crosses a region in Fourier space
where the imaginary part of a is negative, the growth factor exp (−Im (a) X/ε) in this
region becomes exponentially large as the path is shifted toward X → +∞. With the
path on the a2 branch, such a region of Im(a) < 0 exists around the point b = 0, which
has to be crossed to change the sign of the imaginary part of b (see figure 12b). It
is thus clear that Im (a) < 0 can only be avoided by a path on the a1-surface, which
is therefore the relevant a-branch for X → +∞ (see figure 12a). Similarly, a2 is the
relevant branch for X → −∞.

Next, two paths connecting the (Im(a) < 0, Im(b) < 0) and (Im(a) > 0, Im(b) > 0)
regions of figure 1 are considered, one staying in remote regions where r − ρ2 ≈ −1
with a detour through the (Im(a) < 0, Im(b) > 0) region, the other going directly
through the two-dimensional double turning point at the origin where r − ρ2 ≈ 1. In
order to have a uniquely defined phase, these two paths have to end up on the same
wavenumber branches.

As seen in figure 13, the shape of the solution surfaces a1 and a2 is only slightly
modified with regard to r . The main difference between figures 13(a) (r − ρ2 = 1) and
13(b) (r −ρ2 = −1) is in (a) the complete separation of the surfaces by the branch cuts
originating from the branch points (abp1, bbp1), (abp2, bbp2), (abp3, bbp3) and (abp4, bbp4)
which all coalesce at b = 0. The first path through the two-dimensional turning point at
b =0 shown in figure 13(a) switches from the a2- to the a1-branch and from a b-branch
with Im(b) < 0 to a b-branch with Im(b) > 0. Considering that only the surfaces b2

and b3 are connected by branch points which merge into the two-dimensional turning
point at the coordinate origin as r → r t and that Im(b2) > 0 > Im(b3) by virtue of
relation (5.9), the relevant branches of b far from the central region are b2 for Y → ∞
and b3 for Y → −∞. Hence, the same branch switches occur on the two paths in
figure 13 as required.

In summary, the determination of the physically relevant solution surfaces is guided
by three conditions: the first condition specifies the sign of the imaginary parts of the
two wavenumbers to make certain that the global mode is locally stable far from the
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Figure 13. Imaginary parts of the two surfaces a1(b) and a2(b) including branch points
∂aω =0 (�) and ∂bω = 0 with b = 0 (�) for (a) r − ρ2 = 1 and (b) r − ρ2 = −1. The surface
Im(a1) is arbitrarily shifted upward for the sake of clarity. The other parameters and
conventions as in figure 10. Also shown are the paths connecting the (Im(a) < 0, Im(b) < 0)
and (Im(a) > 0, Im(b) > 0) regions via the two-dimensional turning point (a) and via the
(Im(a) < 0, Im(b) > 0) region (b).

Figure 14. Relevant branches of (a) a and (b) b in physical space. The domains of relevance
are bounded by dashed lines, which merge at the two-dimensional double turning point.

central region, as sketched in figure 1. The second condition specifies that only the
branches of the dispersion relation connected by branch points which coalesce into
the two-dimensional double turning point are relevant. This ensures that the branch
switches on different paths in physical space, as depicted in figure 13, are consistent.
The last condition specifies that adjacent regions with the same sign of Im(a) or Im(b)
must be connectible in Fourier space by a path along which this sign never changes,
as shown in figure 12(a). These three conditions yield the diagram in figure 14, from
whom the analytical expressions of the relevant solution surfaces can be deduced.
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Figure 15. Nonlinear evolution at t = 300 of the envelope of the numerical simulations.
(a) Extension of figure 5(c) with the same parameters and conventions. (b) Analogous extension
of figure 8(c).

The next step in evaluating the leading-order WKBJ expansion in the entire
(X,Y )-space would be the practical determination of the fields a(x, y) and b(x, y),
where the location of the branch points in the (X, Y )-space is known from their
dependence on r(X, Y ). This complex task is still open. Another open question
concerns the nonlinear saturation of these global modes. Nonlinear modes have
been numerically observed and studied by Müller, Lücke & Kamps (1992) and
Couairon & Chomaz (1997) in homogeneous systems of finite size. In the present
problem, the inhomogeneity is distributed and not as abrupt as that provided by
boundaries. Hence, the inhomogeneous system considered here is rather the two-
dimensional extension of the situation in Pier et al. (2001). Their nonlinear ‘elephant’
global modes exhibit a front located at the upstream LCU/LAU boundary, which
selects the pulsation and wavenumber of the instability. In our numerical simulations
in which the cubic nonlinearity saturates the instability, we observe a qualitatively
similar behaviour, as seen in figure 15. Nevertheless, a two-dimensional equivalent of
their nonlinear selection criterion is, at this point, far from obvious.

In conclusion, it is important to emphasize that the integration of the outer WKBJ
expansion and the selection criterion of the linear global mode are independent issues.
As it stands, the latter is self-consistent and has been used successfully to determine
the critical conditions of inhomogeneous Rayleigh–Bénard–Poiseuille convection by
an envelope equation formalism. This methodology should also be useful for the
stability analysis of other inhomogeneous systems with supercritical behaviour.
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